Nonutilization bounds and feasible regions for arbitrary fixed-priority policies

Author:

Liu Xue1,Abdelzaher Tarek2

Affiliation:

1. McGill University, Montreal, Quebec, Canada

2. University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

Prior research on schedulability bounds focused primarily on bounding utilization/ as a means to meet deadline constraints. Nontrivial bounds were found for a handful of scheduling policies in which utilization is directly related to the ability of the policy to meet deadlines. Examples include rate-monotonic, deadline-monotonic, and EDF scheduling. For most other scheduling policies, however, utilization is not correlated with schedulability. For example, shortest-job-first can miss deadlines at an arbitrarily low utilization. This raises the question of whether or not some other nonutilization-based metric might be more indicative of schedulability in those cases. This article answers the above question positively by extending the notion of schedulability bounds, in a uniform manner, to arbitrary (fixed) priorities and nonutilization metrics. We present a simple function that generates the schedulability metric to be bounded from the definition of a fixed-priority scheduling policy, and derive a nontrivial schedulability bound on that metric for aperiodic tasks. It is shown that the generated metrics and bounds are valid in that no deadline misses occur when these bounds are not violated. This result allows efficient real-time admission control to be performed in systems with arbitrary fixed-priority scheduling policies. As an example, we illustrate applying schedulability bounds for admission control to shortest-job-first and velocity-monotonic scheduling. While the proposed nonutilization bounds and feasible regions are derived for fixed-priority scheduling policies, the authors are investigating extensions of the results to dynamic-priority scheduling.

Funder

National Science Foundation

Division of Computer and Network Systems

Office of Naval Research

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3