A Faster Subquadratic Algorithm for Finding Outlier Correlations

Author:

Karppa Matti1,Kaski Petteri1,Kohonen Jukka1

Affiliation:

1. Aalto University, Finland

Abstract

We study the problem of detecting outlier pairs of strongly correlated variables among a collection of n variables with otherwise weak pairwise correlations. After normalization, this task amounts to the geometric task where we are given as input a set of n vectors with unit Euclidean norm and dimension d , and for some constants 0<τ < ρ < 1, we are asked to find all the outlier pairs of vectors whose inner product is at least ρ in absolute value, subject to the promise that all but at most q pairs of vectors have inner product at most τ in absolute value. Improving on an algorithm of Valiant [FOCS 2012; J. ACM 2015], we present a randomized algorithm that for Boolean inputs ({ −1,1}-valued data normalized to unit Euclidean length) runs in time Õ(( n max,{ 1−γ + M (Δ γ ,γ), M (1−γ ,2 Δ γ)} + qdn ), where 0<γ < 1 is a constant tradeoff parameter and M (μ, ν) is the exponent to multiply an ⌊ n μ ⌋ × ⌊ n ν ⌋ matrix with an ⌊ n ν ⌋ × ⌊ n μ ⌋ matrix and Δ =1/(1−log τ ρ). As corollaries we obtain randomized algorithms that run in time Õ( ( n 2/ω 3−log τ ρ + qdn 2/(1−log τ ρ)3=log ττ ρ ) and in time õ( ( n 4 / 2+α (1−log τ ρ) + qdn 2/α (1−log τ ρ)2+α (1−log τ ρ) >), where 2≤ ω <2.38 is the exponent for square matrix multiplication and 0.3<α ≤ 1 is the exponent for  rectangular matrix multiplication. The notation Õ(ṡ) hides polylogarithmic factors in n and d whose degree may depend on ρ and τ. We present further corollaries for the light bulb problem and for learning sparse Boolean functions.

Funder

European Research Council under the European Union's Seventh Framework Programme

ERC

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalizations of Matrix Multiplication can solve the Light Bulb Problem;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

2. Tensor Network Complexity of Multilinear Maps;Theory of Computing;2022

3. Approximate Top-k Inner Product Join with a Proximity Graph;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

4. Convex transform order of Beta distributions with some consequences;Statistica Neerlandica;2021-01-25

5. On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product;THEOR COMPUT;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3