Hexahedral-Dominant Meshing

Author:

Sokolov Dmitry1,Ray Nicolas2,Untereiner Lionel2,Lévy Bruno2

Affiliation:

1. Université de Lorraine

2. INRIA Nancy Grand-Est

Abstract

This article introduces a method that generates a hexahedral-dominant mesh from an input tetrahedral mesh. It follows a three-step pipeline similar to the one proposed by Carrier Baudoin et al.: (1) generate a frame field, (2) generate a pointset P that is mostly organized on a regular grid locally aligned with the frame field, and (3) generate the hexahedral-dominant mesh by recombining the tetrahedra obtained from the constrained Delaunay triangulation of P . For step (1), we use a state-of-the-art algorithm to generate a smooth frame field. For step (2), we introduce an extension of Periodic Global Parameterization to the volumetric case. As compared with other global parameterization methods (such as CubeCover), our method relaxes some global constraints to avoid creating degenerate elements, at the expense of introducing some singularities that are meshed using non-hexahedral elements. For step (3), we build on the formalism introduced by Meshkat and Talmor, fill in a gap in their proof, and provide a complete enumeration of all the possible recombinations, as well as an algorithm that efficiently detects all the matches in a tetrahedral mesh. The method is evaluated and compared with the state of the art on a database of examples with various mesh complexities, varying from academic examples to real industrial cases. Compared with the method of Carrier-Baudoin et al., the method results in better scores for classical quality criteria of hexahedral-dominant meshes (hexahedral proportion, scaled Jacobian, etc.). The method also shows better robustness than CubeCover and its derivatives when applied to complicated industrial models.

Funder

INRIA Team ALICE

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference34 articles.

1. A Taxonomy for Conjugate Gradient Methods

2. Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements

3. Mixed-integer quadrangulation

4. I. M. Bomze M. Budinich P. M. Pardalos and M. Pelillo. 1999. The maximum clique problem. In Handbook of Combinatorial Optimization 4. Kluwer Academic. I. M. Bomze M. Budinich P. M. Pardalos and M. Pelillo. 1999. The maximum clique problem. In Handbook of Combinatorial Optimization 4. Kluwer Academic.

5. Arnaud Botella Bruno Lévy and Guillaume Caumon. 2015. Indirect unstructured hex-dominant mesh generation using tetrahedra recombination. Comput. Geosci. (2015) 1--15. DOI:http://dx.doi.org/10.1007/ s10596-015-9484-9 Arnaud Botella Bruno Lévy and Guillaume Caumon. 2015. Indirect unstructured hex-dominant mesh generation using tetrahedra recombination. Comput. Geosci. (2015) 1--15. DOI:http://dx.doi.org/10.1007/ s10596-015-9484-9

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tetrahedralization of Hexahedral Mesh;Lecture Notes in Computational Science and Engineering;2024

2. Meso‐Skeleton Guided Hexahedral Mesh Design;Computer Graphics Forum;2023-10

3. VOLMAP: a Large Scale Benchmark for Volume Mappings to Simple Base Domains;Computer Graphics Forum;2023-08

4. Exploration of 3D motorcycle complexes from hexahedral meshes;Computers & Graphics;2023-08

5. A Course on Hex-Mesh Generation and Processing;ACM SIGGRAPH Asia 2022 Courses;2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3