1. American Cancer Society , “ Cancer facts and figures ”, Atlanta, GA , 2022 . American Cancer Society, “Cancer facts and figures”, Atlanta, GA, 2022.
2. D. Yi , “ Optimizing and Visualizing Deep Learning for Benign/Malignant Classification in Breast Tumors ,” ArXiv170506362 Cs , May 2017 . D. Yi , “Optimizing and Visualizing Deep Learning for Benign/Malignant Classification in Breast Tumors,” ArXiv170506362 Cs, May 2017.
3. Rehman , K. u.; Li , J. ; Pei , Y. ; Yasin , A. ; Ali , S. ; Mahmood , T. Computer Vision-Based Microcalcification Detection in Digital Mammograms Using Fully Connected Depthwise Separable Convolutional Neural Network. Sensors 2021 , 21, 4854. Rehman, K.u.; Li, J.; Pei, Y.; Yasin, A.; Ali, S.; Mahmood, T. Computer Vision-Based Microcalcification Detection in Digital Mammograms Using Fully Connected Depthwise Separable Convolutional Neural Network. Sensors 2021, 21, 4854.
4. Breast image feature learning with adaptive deconvolutional networks
5. A. Krizhevsky , I. Sutskever , and G. E. Hinton , “ ImageNet Classification with Deep Convolutional Neural Networks ,” in Advances in Neural Information Processing Systems 25 , F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc. , 2012 , pp. 1097– 1105 . A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.