Unsupervised Domain Ranking in Large-Scale Web Crawls

Author:

Cui Yi1,Sparkman Clint2,Lee Hsin-Tsang3,Loguinov Dmitri1

Affiliation:

1. Texas A8M University, USA

2. United States Air Force Academy, USA

3. Microsoft Corp., USA

Abstract

With the proliferation of web spam and infinite autogenerated web content, large-scale web crawlers require low-complexity ranking methods to effectively budget their limited resources and allocate bandwidth to reputable sites. In this work, we assume crawls that produce frontiers orders of magnitude larger than RAM, where sorting of pending URLs is infeasible in real time. Under these constraints, the main objective is to quickly compute domain budgets and decide which of them can be massively crawled. Those ranked at the top of the list receive aggressive crawling allowances, while all other domains are visited at some small default rate. To shed light on Internet-wide spam avoidance, we study topology-based ranking algorithms on domain-level graphs from the two largest academic crawls: a 6.3B-page IRLbot dataset and a 1B-page ClueWeb09 exploration. We first propose a new methodology for comparing the various rankings and then show that in-degree BFS-based techniques decisively outperform classic PageRank-style methods, including TrustRank. However, since BFS requires several orders of magnitude higher overhead and is generally infeasible for real-time use, we propose a fast, accurate, and scalable estimation method called TSE that can achieve much better crawl prioritization in practice. It is especially beneficial in applications with limited hardware resources.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference82 articles.

1. Web spam identification through content and hyperlinks

2. Adaptive on-line page importance computation

3. Around the web in six weeks: Documenting a large-scale crawl

4. alexa.com. Retrieved in 2015 from http://www.alexa.com/. alexa.com. Retrieved in 2015 from http://www.alexa.com/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3