Counterfactual Fairness in Text Classification through Robustness
Author:
Affiliation:
1. Stanford University, Stanford, CA, USA
2. Google AI, New York, NY, USA
3. Google AI, Mountain View, CA, USA
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3306618.3317950
Reference24 articles.
1. Alex Beutel Jilin Chen Zhe Zhao and Ed H. Chi. 2017. Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations. CoRR Vol. abs/1707.00075 (2017). arxiv: 1707.00075 http://arxiv.org/abs/1707.00075 Alex Beutel Jilin Chen Zhe Zhao and Ed H. Chi. 2017. Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations. CoRR Vol. abs/1707.00075 (2017). arxiv: 1707.00075 http://arxiv.org/abs/1707.00075
2. Silvia Chiappa and Thomas P. S. Gillam. 2018. Path-Specific Counterfactual Fairness. arXiv e-prints Article arXiv:1802.08139 (Feb. 2018) arXiv:1802.08139 pages. arxiv: stat.ML/1802.08139 Silvia Chiappa and Thomas P. S. Gillam. 2018. Path-Specific Counterfactual Fairness. arXiv e-prints Article arXiv:1802.08139 (Feb. 2018) arXiv:1802.08139 pages. arxiv: stat.ML/1802.08139
3. Lucas Dixon John Li Jeffrey Sorensen Nithum Thain and Lucy Vasserman. 2018. Measuring and Mitigating Unintended Bias in Text Classification. Lucas Dixon John Li Jeffrey Sorensen Nithum Thain and Lucy Vasserman. 2018. Measuring and Mitigating Unintended Bias in Text Classification.
4. Cynthia Dwork Moritz Hardt Toniann Pitassi Omer Reingold and Richard S. Zemel. 2011. Fairness Through Awareness. CoRR Vol. abs/1104.3913 (2011). arxiv: 1104.3913 http://arxiv.org/abs/1104.3913 Cynthia Dwork Moritz Hardt Toniann Pitassi Omer Reingold and Richard S. Zemel. 2011. Fairness Through Awareness. CoRR Vol. abs/1104.3913 (2011). arxiv: 1104.3913 http://arxiv.org/abs/1104.3913
Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AutoRIC: Automated Neural Network Repairing Based on Constrained Optimization;ACM Transactions on Software Engineering and Methodology;2024-09-04
2. Indian-BhED: A Dataset for Measuring India-Centric Biases in Large Language Models;Proceedings of the 2024 International Conference on Information Technology for Social Good;2024-09-04
3. Towards trustworthy LLMs: a review on debiasing and dehallucinating in large language models;Artificial Intelligence Review;2024-08-10
4. Addressing bias in bagging and boosting regression models;Scientific Reports;2024-08-08
5. Prompts and Large Language Models: A New Tool for Drafting, Reviewing and Interpreting Contracts?;Law, Technology and Humans;2024-07-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3