Topology control and routing in ad hoc networks

Author:

Rajaraman Rajmohan1

Affiliation:

1. Northeastern University, Boston, MA

Abstract

An ad hoc wireless network, or simply an ad hoc network, consists of a collection of geographically distributed nodes that communicate with one other over a wireless medium. An ad hoc network differs from cellular networks in that there is no wired infrastructure and the communication capabilities of the network are limited by the battery power of the network nodes. One of the original motivations for ad hoc networks is found in military applications. A classic example of ad hoc networking is network of war fighters and their mobile platforms in battlefields. Indeed, a wealth of early research in the area involved the development of packet-radio networks (PRNs) and survivable radio networks [16]. While military applications still dominate the research needs in ad hoc networking, the recent rapid advent of mobile telephony and plethora of personal digital assistants has brought to the fore a number of potential commercial applications of ad hoc networks. Examples are disaster relief, conferencing, home networking, sensor networks, personal area networks, and embedded computing applications [37].The lack of a fixed infrastructure in ad hoc networks implies that any computation on the network needs to be carried out in a decentralized manner. Thus, many of the important problems in ad hoc networking can be formulated as problems in distributed computing. However, there are certain characteristics of ad hoc networks that makes this study somewhat different than traditional work in distributed computing. In this article, we review some of the characteristic features of ad hoc networks, formulate problems and survey research work done in the area. We focus on two basic problem domains: topology control, the problem of computing and maintaining a connected topology among the network nodes, and routing. This article is not intended to be a comprehensive survey on ad hoc networking. The choice of the problems discussed in this article are somewhat biased by the research interests of the author.The remainder of this article is organized as follows. In Section 2, we describe various aspects relevant to modeling ad hoc networks. In Section 3, we discuss topology control. Since the nodes of an ad hoc network are often associated with points in 2-dimensional space, topology control is closely tied to computational geometry; we will briefly review this relationship and extant work in the area. In Section 4, we discuss routing protocols for ad hoc networks. After a brief overview of the many protocols that have been proposed, we discuss alternative approaches based on the adversarial network model.

Publisher

Association for Computing Machinery (ACM)

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topology-aware Federated Learning in Edge Computing: A Comprehensive Survey;ACM Computing Surveys;2024-06-22

2. The Impact of Cooperation in Bilateral Network Creation;Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing;2023-06-16

3. Topology control algorithms in multi-unmanned aerial vehicle networks: An extensive survey;Journal of Network and Computer Applications;2022-11

4. Sparse hop spanners for unit disk graphs;Computational Geometry;2022-01

5. Finding Geometric Representations of Apex Graphs is NP-Hard;WALCOM: Algorithms and Computation;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3