Semantics-guided synthesis

Author:

Kim Jinwoo1,Hu Qinheping1,D'Antoni Loris1,Reps Thomas1

Affiliation:

1. University of Wisconsin-Madison, USA

Abstract

This paper develops a new framework for program synthesis, called semantics-guided synthesis (SemGuS), that allows a user to provide both the syntax and the semantics for the constructs in the language. SemGuS accepts a recursively defined big-step semantics, which allows it, for example, to be used to specify and solve synthesis problems over an imperative programming language that may contain loops with unbounded behavior. The customizable nature of SemGuS also allows synthesis problems to be defined over a non-standard semantics, such as an abstract semantics. In addition to the SemGuS framework, we develop an algorithm for solving SemGuS problems that is capable of both synthesizing programs and proving unrealizability, by encoding a SemGuS problem as a proof search over Constrained Horn Clauses: in particular, our approach is the first that we are aware of that can prove unrealizabilty for synthesis problems that involve imperative programs with unbounded loops, over an infinite syntactic search space. We implemented the technique in a tool called MESSY, and applied it to SyGuS problems (i.e., over expressions), synthesis problems over an imperative programming language, and synthesis problems over regular expressions.

Funder

Office of Naval Research

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Example-Based Reasoning about the Realizability of Polymorphic Programs;Proceedings of the ACM on Programming Languages;2024-08-15

2. Decomposition-based Synthesis for Applying Divide-and-Conquer-like Algorithmic Paradigms;ACM Transactions on Programming Languages and Systems;2024-06-17

3. A Case for Synthesis of Recursive Quantum Unitary Programs;Proceedings of the ACM on Programming Languages;2024-01-05

4. Programming-by-Demonstration for Long-Horizon Robot Tasks;Proceedings of the ACM on Programming Languages;2024-01-05

5. The SemGuS Toolkit;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3