Steered Training Data Generation for Learned Semantic Type Detection

Author:

Langenecker Sven1ORCID,Sturm Christoph2ORCID,Schalles Christian Schalles2ORCID,Binnig Carsten3ORCID

Affiliation:

1. LÄPPLE AG; DHBW Mosbach; & Technical University of Darmstadt, Heilbronn, Germany

2. DHBW Mosbach, Mosbach, Germany

3. Technical University of Darmstadt & DFKI, Darmstadt, Germany

Abstract

In this paper, we introduce STEER to adapt learned semantic type extraction approaches to a new, unseen data lake. STEER provides a data programming framework for semantic labeling which is used to generate new labeled training data with minimal overhead. At its core, STEER comes with a novel training data generation procedure called Steered-Labeling that can generate high quality training data not only for non-numeric but also for numerical columns. With this generated training data STEER is able to fine-tune existing learned semantic type extraction models. We evaluate our approach on four different data lakes and show that we can significantly improve the performance of two different types of learned models across all data lakes.

Publisher

Association for Computing Machinery (ACM)

Reference40 articles.

1. Alation 2022. Alation Data Catalog. https://www.alation.com/. Accessed: 2022--10--15. Alation 2022. Alation Data Catalog. https://www.alation.com/. Accessed: 2022--10--15.

2. Amazon Web Services 2022. AWS Glue Data Catalog. https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html. Accessed: 2022--10--15. Amazon Web Services 2022. AWS Glue Data Catalog. https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html. Accessed: 2022--10--15.

3. TabEL: Entity Linking in Web Tables

4. Jiaoyan Chen , Ernesto Jiménez-Ruiz , Ian Horrocks , and Charles Sutton . 2019. ColNet: Embedding the Semantics of Web Tables for Column Type Prediction . In AAAI'19 (Honolulu, Hawaii, USA) (AAAI'19/IAAI'19/EAAI'19) . AAAI Press , Article 4, 8 pages. https://doi.org/10.1609/aaai.v33i01.330129 10.1609/aaai.v33i01.330129 Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. 2019. ColNet: Embedding the Semantics of Web Tables for Column Type Prediction. In AAAI'19 (Honolulu, Hawaii, USA) (AAAI'19/IAAI'19/EAAI'19). AAAI Press, Article 4, 8 pages. https://doi.org/10.1609/aaai.v33i01.330129

5. Collibra 2022. Collibra Data Catalog. https://www.collibra.com/us/en/products/data-catalog. Accessed: 2022--10--15. Collibra 2022. Collibra Data Catalog. https://www.collibra.com/us/en/products/data-catalog. Accessed: 2022--10--15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3