Approximation Algorithms for Computing Maximin Share Allocations

Author:

Amanatidis Georgios1,Markakis Evangelos1,Nikzad Afshin2,Saberi Amin2

Affiliation:

1. Athens University of Economics and Business, Greece

2. Stanford University, Stanford, CA, USA

Abstract

We study the problem of computing maximin share allocations, a recently introduced fairness notion. Given a set of n agents and a set of goods, the maximin share of an agent is the best she can guarantee to herself, if she is allowed to partition the goods in any way she prefers, into n bundles, and then receive her least desirable bundle. The objective then is to find a partition, where each agent is guaranteed her maximin share. Such allocations do not always exist, hence we resort to approximation algorithms. Our main result is a 2/3-approximation that runs in polynomial time for any number of agents and goods. This improves upon the algorithm of Procaccia and Wang (2014), which is also a 2/3-approximation but runs in polynomial time only for a constant number of agents. To achieve this, we redesign certain parts of the algorithm in Procaccia and Wang (2014), exploiting the construction of carefully selected matchings in a bipartite graph representation of the problem. Furthermore, motivated by the apparent difficulty in establishing lower bounds, we undertake a probabilistic analysis. We prove that in randomly generated instances, maximin share allocations exist with high probability. This can be seen as a justification of previously reported experimental evidence. Finally, we provide further positive results for two special cases arising from previous works. The first is the intriguing case of three agents, where we provide an improved 7/8-approximation. The second case is when all item values belong to {0, 1, 2}, where we obtain an exact algorithm.

Funder

Operational Program „Education and Lifelong Learning” of the National Strategic Reference Framework

European Union

THALES—Investing in knowledge society through the European Social Fund

Greek national

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3