Sequence Generation Model Integrating Domain Ontology for Mathematical question tagging

Author:

Huang Tao1,Hu Shengze1,Lin Keke1,Yang Huali2,Zhang Hao1,Song Houbing3,Lv Zhihan4

Affiliation:

1. Central China Normal University, China

2. Wuhan Textile University, China

3. Embry-Riddle Aeronautical University, USA

4. Uppsala University, Sweden

Abstract

In online learning systems, tagging knowledge points for questions is a fundamental task. Automatic tagging technology uses intelligent algorithms to automatically tag knowledge points for questions to reduce manpower and time costs. However, the current knowledge point tagging technology cannot satisfy the situation that mathematics questions often involve a variable number of knowledge points, lacks the consideration of the characteristics of the mathematics field, and ignores the internal connection between knowledge points. To address the above issues, we propose a Sequence Generation Model Integrating Domain Ontology for Mathematical question tagging (SOMPT). SOMPT performs data augmentation for text and then obtains intermediate text based on domain ontology replacement to facilitate deep learning model to understand mathematical question text. SOMPT is able to obtain dynamic word vector embedding to optimize the textual representation for math questions. What’s more, our model can capture the relationship between tags to generate knowledge points more accurately in the way of sequence generation. The comparative experimental results show that our proposed model has an excellent tagging ability for mathematical questions. Moreover, the sequence generation module in SOMPT can be applied on other multi-label classification tasks and be on par with the state-of-the-art performance models.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference54 articles.

1. Education-specific Tag Recommendation in CQA Systems

2. Shaojie Bai J Zico Kolter and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271(2018). Shaojie Bai J Zico Kolter and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271(2018).

3. Matthew  R Boutell , Jiebo Luo , Xipeng Shen , and Christopher  M Brown . 2004. Learning multi-label scene classification. Pattern recognition 37, 9 ( 2004 ), 1757–1771. Matthew R Boutell, Jiebo Luo, Xipeng Shen, and Christopher M Brown. 2004. Learning multi-label scene classification. Pattern recognition 37, 9 (2004), 1757–1771.

4. A Hybrid BERT Model That Incorporates Label Semantics via Adjustive Attention for Multi-Label Text Classification

5. A joint probabilistic classification model of relevant and irrelevant sentences in mathematical word problems;Cetintas Suleyman;Journal of Educaltional Data Mining,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3