Boosting Hyperspectral Image Classification with Dual Hierarchical Learning

Author:

Wang Shuo1,Ben Huixia2,Hao Yanbin1,He Xiangnan1,Wang Meng2

Affiliation:

1. School of Data Science, School of Information Science and Technology, University of Science and Technology of China, China

2. School of Computer Science and Information Engineering, School of Artificial Intelligence, Hefei University of Technology, China

Abstract

Hyperspectral image (HSI) classification aims at predicting the pixel-wise labels in an image, where there are only a few labeled pixel samples (hard labels) for training. It is a challenging task since the classification process is susceptible to over-fitting under training with limited samples. To relieve this problem, we propose a method based on dual hierarchical learning. First, we employ a connectionist hyperspectral convolution (HC) network to capture the representations of the pixels from different receptive fields. Specifically, an HC is designed to learn the correlation among adjacent pixels and is further extended to a connectionist hierarchical structure. These operations use the correlation to enhance one-pixel learning from multiple receptive fields. Second, we analyze the properties in the hyperspectral image and introduce a hierarchical pseudo label generation algorithm to enrich the supervision of the label information. Finally, we design a dual hierarchical learning strategy to help all HC layers learn from both the hard labels and the hierarchical pseudo labels. In other words, it addresses the HSI classification problem from different views. For inference, we employ two fusion strategies to find a better prediction. The experimental results on four popular HSI benchmarks, i.e., Salinas-A, IndianPines, PaviaU, and PaviaC, demonstrate the effectiveness of the proposed method. Our code is publicly available on GitHub: https://github.com/ShuoWangCS/HSI-DHL.

Funder

National Nature Science Foundation of China

The University Synergy Innovation Program of Anhui Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoupling Deep Learning for Enhanced Image Recognition Interpretability;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-10

2. Pseudo Content Hallucination for Unpaired Image Captioning;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

3. Semantic-based Selection, Synthesis, and Supervision for Few-shot Learning;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

4. An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance;Computational Economics;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3