Fast rendering of fabric micro-appearance models under directional and spherical gaussian lights

Author:

Khungurn Pramook1,Wu Rundong1,Noeckel James1,Marschner Steve1,Bala Kavita1

Affiliation:

1. Cornell University

Abstract

Rendering fabrics using micro-appearance models---fiber-level microgeometry coupled with a fiber scattering model---can take hours per frame. We present a fast, precomputation-based algorithm for rendering both single and multiple scattering in fabrics with repeating structure illuminated by directional and spherical Gaussian lights. Precomputed light transport (PRT) is well established but challenging to apply directly to cloth. This paper shows how to decompose the problem and pick the right approximations to achieve very high accuracy, with significant performance gains over path tracing. We treat single and multiple scattering separately and approximate local multiple scattering using precomputed transfer functions represented in spherical harmonics. We handle shadowing between fibers with precomputed per-fiber-segment visibility functions, using two different representations to separately deal with low and high frequency spherical Gaussian lights. Our algorithm is designed for GPU performance and high visual quality. Compared to existing PRT methods, it is more accurate. In tens of seconds on a commodity GPU, it renders high-quality supersampled images that take path tracing tens of minutes on a compute cluster.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Appearance Model for Cloth Rendering;Computer Graphics Forum;2024-07

2. MIRROR;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

3. CT2Hair: High-Fidelity 3D Hair Modeling using Computed Tomography;ACM Transactions on Graphics;2023-07-26

4. A Realistic Surface-based Cloth Rendering Model;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Proceedings;2023-07-23

5. A Practical and Hierarchical Yarn‐based Shading Model for Cloth;Computer Graphics Forum;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3