Boosting VLSI Design Flow Parameter Tuning with Random Embedding and Multi-objective Trust-region Bayesian Optimization

Author:

Zheng Su1ORCID,Geng Hao2ORCID,Bai Chen1ORCID,Yu Bei1ORCID,Wong Martin D. F.1ORCID

Affiliation:

1. The Chinese University of Hong Kong, Hong Kong SAR

2. ShanghaiTech University, China

Abstract

Modern very large-scale integration (VLSI) design requires the implementation of integrated circuits using electronic design automation (EDA) tools. Due to the complexity of EDA algorithms, there are numerous tool parameters that have imperative impacts on the chip design quality. Manual selection of parameter values is excessively laborious and constrained by experts’ experience. Due to the high complexity and lack of parallelization, most existing parameter tuning methods cannot make sufficient exploration in a large search space. In this article, we boost the efficiency and performance of parameter tuning with random embedding and multi-objective trust-region Bayesian optimization. Random embedding can effectively cut down the number of variables in the search process and thus reduce the runtime of Bayesian optimization. Multi-objective trust-region Bayesian optimization allows the algorithm to explore diverse solutions with excellent parallelism. Due to the ability to do more exploration in limited runtime, the proposed framework can achieve better performance than existing methods in our experiments.

Funder

AI Chip Center for Emerging Smart Systems (ACCESS), Hong Kong

The Innovation and Technology Fund

The Research Grants Council of Hong Kong SAR

Shanghai Pujiang Program

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference35 articles.

1. Anthony Agnesina, Kyungwook Chang, and Sung Kyu Lim. 2020. VLSI placement parameter optimization using deep reinforcement learning. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Article 144, 9 pages.

2. OpenROAD: Toward a self-driving, open-source digital layout implementation tool chain;Ajayi T.;Proceedings of Government Microcircuit Applications and Critical Technology Conference,2019

3. Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter optimization framework. In ACM International Conference on Knowledge Discovery and Data Mining (KDD).

4. The rocket chip generator;Asanovic Krste;EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,2016

5. Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2020. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. In Advances in Neural Information Processing Systems.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3