Affiliation:
1. Villanova University, Villanova, PA
Abstract
In a recently launched research program for developing logic as a formal theory of (interactive) computability, several very interesting logics have been introduced and axiomatized. These fragments of the larger Computability Logic aim not only to describe what can be computed, but also provide a mechanism for extracting computational algorithms from proofs. Among the most expressive and fundamental of these is CL4, known to be (constructively) sound and complete with respect to the underlying computational semantics. Furthermore, the ∀, ∃-free fragment of CL4 was shown to be decidable in polynomial space. The present work extends this result and proves that this fragment is, in fact, PSPACE-complete.
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献