Affiliation:
1. Lehigh University, Bethlehem PA
Abstract
Search satisfaction is defined as the fulfillment of a user’s information need. Characterizing and predicting the satisfaction of search engine users is vital for improving ranking models, increasing user retention rates, and growing market share. This article provides an overview of the research areas related to user satisfaction. First, we show that whenever users choose to defect from one search engine to another they do so mostly due to dissatisfaction with the search results. We also describe several search engine switching prediction methods, which could help search engines retain more users. Second, we discuss research on the difference between good and bad abandonment, which shows that in approximately 30% of all abandoned searches the users are in fact satisfied with the results. Third, we catalog techniques to determine queries and groups of queries that are underperforming in terms of user satisfaction. This can help improve search engines by developing specialized rankers for these query patterns. Fourth, we detail how task difficulty affects user behavior and how task difficulty can be predicted. Fifth, we characterize satisfaction and we compare major satisfaction prediction algorithms.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献