Optimal mapping of sequences of data parallel tasks

Author:

Subhlok Jaspal1,Vondran Gary2

Affiliation:

1. School of Computer Science, Carnegie Mellon University, Pittsburgh PA

2. Advanced LaserJet Operation, Hewlett Packard Company, Boise, ID

Abstract

Many applications in a variety of domains including digital signal processing, image processing and computer vision are composed of a sequence of tasks that act on a stream of input data sets in a pipelined manner. Recent research has established that these applications are best mapped to a massively parallel machine by dividing the tasks into modules and assigning a subset of the available processors to each module. This paper addresses the problem of optimally mapping such applications onto a massively parallel machine. We formulate the problem of optimizing throughput in task pipelines and present two new solution algorithms. The formulation uses a general and realistic model for inter-task communication, takes memory constraints into account, and addresses the entire problem of mapping which includes clustering tasks into modules, assignment of processors to modules, and possible replication of modules. The first algorithm is based on dynamic programming and finds the optimal mapping of k tasks onto P processors in O(P 4 k 2 ) time. We also present a heuristic algorithm that is linear in the number of processors and establish with theoretical and practical results that the solutions obtained are optimal in practical situations. The entire framework is implemented as an automatic mapping tool for the Fx parallelizing compiler for High Performance Fortran. We present experimental results that demonstrate the importance of choosing a good mapping and show that the methods presented yield efficient mappings and predict optimal performance accurately.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference15 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3