Data and computation transformations for multiprocessors

Author:

Anderson Jennifer M.1,Amarasinghe Saman P.1,Lam Monica S.1

Affiliation:

1. Computer Systems Laboratory, Stanford University, CA

Abstract

Effective memory hierarchy utilization is critical to the performance of modern multiprocessor architectures. We have developed the first compiler system that fully automatically parallelizes sequential programs and changes the original array layouts to improve memory system performance. Our optimization algorithm consists of two steps. The first step chooses the parallelization and computation assignment such that synchronization and data sharing are minimized. The second step then restructures the layout of the data in the shared address space with an algorithm that is based on a new data transformation framework. We ran our compiler on a set of application programs and measured their performance on the Stanford DASH multiprocessor. Our results show that the compiler can effectively optimize parallelism in conjunction with memory subsystem performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference33 articles.

1. Automatic Partitioning of Parallel Loops for Cache-Coherent Multiprocessors

2. A. V. Aho R. Sethi and J. D. Ullman. Compilers: Principles Techniques and Tools. Addison-Wesley Reading MA second edition 1986.]] A. V. Aho R. Sethi and J. D. Ullman. Compilers: Principles Techniques and Tools. Addison-Wesley Reading MA second edition 1986.]]

3. Global optimizations for parallelism and locality on scalable parallel machines

4. Optimizing Parallel Programs Using Affinity Regions

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distance-in-time versus distance-in-space;Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2021-06-18

2. Optimizing data layout and system configuration on FPGA-based heterogeneous platforms;Proceedings of the International Conference on Computer-Aided Design;2018-11-05

3. Optimizing inter-nest data locality in imperfect stencils based on loop blocking;The Journal of Supercomputing;2018-05-30

4. The Ramachandran Number: An Order Parameter for Protein Geometry;PLOS ONE;2016-08-04

5. Analysis of Parallel Algorithms on SMP Node and Cluster of Workstations Using Parallel Programming Models with New Tile-based Method for Large Biological Datasets;Bioinformatics and Biology Insights;2016-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3