Affiliation:
1. University of Technology Sydney, NSW, Australia
Abstract
The capacity to recognize faces under varied poses is a fundamental human ability that presents a unique challenge for computer vision systems. Compared to frontal face recognition, which has been intensively studied and has gradually matured in the past few decades, Pose-Invariant Face Recognition (PIFR) remains a largely unsolved problem. However, PIFR is crucial to realizing the full potential of face recognition for real-world applications, since face recognition is intrinsically a passive biometric technology for recognizing uncooperative subjects. In this article, we discuss the inherent difficulties in PIFR and present a comprehensive review of established techniques. Existing PIFR methods can be grouped into four categories, that is, pose-robust feature extraction approaches, multiview subspace learning approaches, face synthesis approaches, and hybrid approaches. The motivations, strategies, pros/cons, and performance of representative approaches are described and compared. Moreover, promising directions for future research are discussed.
Funder
Australian Research Council
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
236 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献