Identifying the Root Causes of Wait States in Large-Scale Parallel Applications

Author:

Böhme David1,Geimer Markus2,Arnold Lukas2,Voigtlaender Felix3,Wolf Felix4

Affiliation:

1. Lawrence Livermore National Laboratory, USA

2. Jülich Supercomputing Centre, Germany

3. RWTH Aachen University, Germany

4. Technische Universität Darmstadt, Germany

Abstract

Driven by growing application requirements and accelerated by current trends in microprocessor design, the number of processor cores on modern supercomputers is increasing from generation to generation. However, load or communication imbalance prevents many codes from taking advantage of the available parallelism, as delays of single processes may spread wait states across the entire machine. Moreover, when employing complex point-to-point communication patterns, wait states may propagate along far-reaching cause-effect chains that are hard to track manually and that complicate an assessment of the actual costs of an imbalance. Building on earlier work by Meira, Jr., et al., we present a scalable approach that identifies program wait states and attributes their costs in terms of resource waste to their original cause. By replaying event traces in parallel both forward and backward, we can identify the processes and call paths responsible for the most severe imbalances, even for runs with hundreds of thousands of processes.

Funder

G8 Research Councils Initiative on Multilateral Research

Deutsche Forschungsgemeinschaft

U.S. Department of Energy by Lawrence Livermore National Laboratory

Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues is gratefully acknowledged

Helmholtz Association of German Research Centers

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3