DRC-SG 2.0: Efficient Design Rule Checking Script Generation via Key Information Extraction

Author:

Zhu Binwu1ORCID,Zhang Xinyun1ORCID,Lin Yibo2ORCID,Yu Bei1ORCID,Wong Martin1ORCID

Affiliation:

1. The Chinese University of Hong Kong

2. Peking University

Abstract

Design Rule Checking (DRC) is a critical step in integrated circuit design. DRC requires formatted scripts as the input to design rule checkers. However, these scripts are manually generated in the foundry, which is tedious and error prone for generation of thousands of rules in advanced technology nodes. To mitigate this issue, we propose the first DRC script generation framework, leveraging a deep learning-based key information extractor to automatically identify essential arguments from rules and a script translator to organize the extracted arguments into executable DRC scripts. We further enhance the performance of the extractor with three specific design rule generation techniques and a multi-task learning-based rule classification module. Experimental results demonstrate that the framework can generate a single rule script in 5.46 ms on average, with the extractor achieving 91.1% precision and 91.8% recall on the key information extraction. Compared with the manual generation, our framework can significantly reduce the turnaround time and speed up process design closure.

Funder

The Research Grants Council of Hong Kong SAR

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference38 articles.

1. KLayout. Retrieved from https://www.klayout.de/doc/manual/drc.html.

2. LayoutEditor. Retrieved from https://www.layouteditor.org/layoutscript/api/drc.

3. Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z. Pan. 2019. DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement. In Proceedings of the ACM/IEEE Design Automation Conference (DAC’19). 1–6.

4. Siting Liu, Qi Sun, Peiyu Liao, Yibo Lin, and Bei Yu. 2021. Global placement with deep learning-enabled explicit routability optimization. In Proceedings of the IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE’21). 1821–1824.

5. Zhiyao Xie, Yu-Hung Huang, Guan-Qi Fang, Haoxing Ren, Shao-Yun Fang, Yiran Chen, and Jiang Hu. 2018. RouteNet: Routability prediction for mixed-size designs using convolutional neural network. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’18). 1–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3