A novel framework for exploring 3-D FPGAs with heterogeneous interconnect fabric

Author:

Siozios Kostas1,Pavlidis Vasilis F.2,Soudris Dimitrios1

Affiliation:

1. National Technical University of Athens, Greece

2. Integrated Systems Laboratory, EPFL, Switzerland

Abstract

A heterogeneous interconnect architecture can be a useful approach for the design of 3-D FPGAs. A methodology to investigate heterogeneous interconnection schemes for 3-D FPGAs under different 3-D fabrication technologies is proposed. Application of the proposed methodology on benchmark circuits demonstrates an improvement in delay, power consumption, and total wire-length of approximately 41%, 32%, and 36%, respectively, as compared to 2-D FPGAs. These improvements are additional to reducing the number of interlayer connections. The fewer interlayer connections are traded off for a higher yield. An area model to evaluate this trade-off is presented. Results indicate that a heterogeneous 3-D FPGA requires 37% less area as compared to a homogeneous 3-D FPGA. Consequently, the heterogeneous FPGAs can exhibit a higher manufacturing yield. A design toolset is also developed to support the design and exploration of various performance metrics for the proposed 3-D FPGAs.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three Dimensional FPGA Architecture with Fewer TSVs;IEICE Transactions on Information and Systems;2018

2. Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture;Field - Programmable Gate Array;2017-05-31

3. A Customizable Framework for Application Implementation onto 3-D FPGAs;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2016-11

4. Exploration of Mesh-Based FPGA Architecture: Comparison of 2D and 3D Technologies in Terms of Power, Area and Performance;2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP);2016-02

5. Physical Design and Implementation of 3D Tree-Based FPGAs;Lecture Notes in Electrical Engineering;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3