Algorithm 972

Author:

Pérez Juan F.1,Silva Daniel F.2,Góez Julio C.3,Sarmiento Andrés4,Sarmiento-Romero Andrés5,Akhavan-Tabatabaei Raha6,Riaño Germán4

Affiliation:

1. University of Melbourne

2. Auburn University, AL

3. NHH Norwegian School of Economics

4. Universidad de los Andes

5. Universidad de los Andes, Colombia

6. Universidad de los Andes and Sabanci University

Abstract

Markov chains (MC) are a powerful tool for modeling complex stochastic systems. Whereas a number of tools exist for solving different types of MC models, the first step in MC modeling is to define the model parameters. This step is, however, error prone and far from trivial when modeling complex systems. In this article, we introduce jMarkov, a framework for MC modeling that provides the user with the ability to define MC models from the basic rules underlying the system dynamics. From these rules, jMarkov automatically obtains the MC parameters and solves the model to determine steady-state and transient performance measures. The jMarkov framework is composed of four modules: (i) the main module supports MC models with a finite state space; (ii) the jQBD module enables the modeling of Quasi-Birth-and-Death processes, a class of MCs with infinite state space; (iii) the jMDP module offers the capabilities to determine optimal decision rules based on Markov Decision Processes; and (iv) the jPhase module supports the manipulation and inclusion of phase-type variables to represent more general behaviors than that of the standard exponential distribution. In addition, jMarkov is highly extensible, allowing the users to introduce new modeling abstractions and solvers.

Funder

ARC Centre of Excellence for Mathematical and Statistical Frontiers

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference64 articles.

1. Advanced Logistic Department 2013. RAM Commander Version 8.3. Advanced Logistic Department. Retrieved from http://aldservice.com/en/reliability-products/markov.html. Advanced Logistic Department 2013. RAM Commander Version 8.3. Advanced Logistic Department. Retrieved from http://aldservice.com/en/reliability-products/markov.html.

2. D. Applegate W. Cook S. Dash and M. Mevenkamp. 2003. QSopt Reference Manual. Retrieved from http://www2.isye.gatech.edu/∼wcook/qsopt/index.html. D. Applegate W. Cook S. Dash and M. Mevenkamp. 2003. QSopt Reference Manual. Retrieved from http://www2.isye.gatech.edu/∼wcook/qsopt/index.html.

3. Fitting phase type distributions via the EM algorithm;Asmussen S.;Scand. J. Stat.,1996

4. A Production Line that Balances Itself

5. R. Becker S. Zilberstein and V. Lesser. 2004. Decentralized Markov Decision Processes with Event-Driven Interactions. In Autonomous Agents 8 multi Agent Systems. AAMAS (July 2004). 10.1109/AAMAS.2004.100 R. Becker S. Zilberstein and V. Lesser. 2004. Decentralized Markov Decision Processes with Event-Driven Interactions. In Autonomous Agents 8 multi Agent Systems. AAMAS (July 2004). 10.1109/AAMAS.2004.100

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3