Discrete-Time Modeling of NFV Accelerators that Exploit Batched Processing

Author:

Geissler Stefan1,Lange Stanislav2,Linguaglossa Leonardo3,Rossi Dario3,Zinner Thomas2,Hossfeld Tobias1

Affiliation:

1. University of Wuerzburg, Würzburg, Bavaria, Germany

2. Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway

3. Telecom ParisTech, Palaiseau, France

Abstract

Network Functions Virtualization (NFV) is among the latest network revolutions, promising increased flexibility and avoiding network ossification. At the same time, all-software NFV implementations on commodity hardware raise performance issues when comparing to ASIC solutions. To address these issues, numerous software acceleration frameworks for packet processing have been proposed in the last few years. One central mechanism of many of these frameworks is the use of batching techniques , where packets are processed in groups as opposed to individually. This is required to provide high-speed capabilities by minimizing framework overhead, reducing interrupt pressure, and leveraging instruction-level cache hits. Several such system implementations have been proposed and experimentally benchmarked in the past. However, the scientific community has so far only to a limited extent attempted to model the system dynamics of modern NFV routers exploiting batching acceleration. In this article, we propose a simple, generic model for this type of batching-based systems that can be applied to predict all relevant key performance indicators. In particular, we extend our previous work and formulate the calculation of the queue size as well as waiting time distributions in addition to the batch size distribution and the packet loss probability. Furthermore, we introduce the waiting time distribution as a relevant QoS parameter and perform an in-depth parameter study, widening the set of investigated variables as well as the range of values. Finally, we contrast the model prediction with experimental results gathered in a high-speed testbed including an NFV router, showing that the model not only correctly captures system performance under simple conditions, but also in more realistic scenarios in which traffic is processed by a mixture of functions.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Media Technology,Information Systems,Software,Computer Science (miscellaneous)

Reference54 articles.

1. A stochastic model of TCP/IP with stationary random losses;Altman Eitan;ACM SIGCOMM Computer Communication Review,2000

2. On queueing processes with bulk service;Bailey Norman T. J.;Journal of the Royal Statistical Society: Series B (Methodological),1954

3. Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service

4. Applications of bulk queues to group testing models with incomplete identification;Bar-Lev Shaul K.;European Journal of Operational Research,2007

5. High-Speed Software Data Plane via Vectorized Packet Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Efficient Packet Batching and Resource Allocation for GPU based NFV Acceleration;2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS);2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3