Evolving 3D objects with a generative encoding inspired by developmental biology

Author:

Clune Jeff1,Lipson Hod1

Affiliation:

1. Cornell University

Abstract

This paper introduces an algorithm for evolving 3D objects with a generative encoding that abstracts how biological morphologies are produced. Evolving interesting 3D objects is useful in many disciplines, including artistic design (e.g. sculpture), engineering (e.g. robotics, architecture, or product design), and biology (e.g. for investigating morphological evolution). A critical element in evolving 3D objects is the representation, which strongly influences the types of objects produced. In 2007 a representation was introduced called Compositional Pattern Producing Networks (CPPN), which abstracts how natural phenotypes are generated. To date, however, the ability of CPPNs to create 3D objects has barely been explored. Here we present a new way to create 3D objects with CPPNs. Experiments with both interactive and target-based evolution demonstrate that CPPNs show potential in generating interesting, complex, 3D objects. We further show that changing the information provided to CPPNs and the functions allowed in their genomes biases the types of objects produced. Finally, we validate that the objects transfer well from simulation to the real-world by printing them with a 3D printer. Overall, this paper shows that evolving objects with encodings based on concepts from biological development can be a powerful way to evolve complex, interesting objects, which should be of use in fields as diverse as art, engineering, and biology.

Funder

Division of Electrical, Communications and Cyber Systems

Division of Information and Intelligent Systems

Division of Biological Infrastructure

Publisher

Association for Computing Machinery (ACM)

Reference20 articles.

1. Evolving CPPNs to grow three-dimensional physical structures

2. {Bentley 1996} Bentley P. J. (1996). Generic Evolutionary Design of Solid Objects using a Genetic Algorithm. PhD thesis University of Huddersfield. {Bentley 1996} Bentley P. J. (1996). Generic Evolutionary Design of Solid Objects using a Genetic Algorithm . PhD thesis University of Huddersfield.

3. The sensitivity of HyperNEAT to different geometric representations of a problem

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3