Situational Factor Determinants of the Allocation of Decision Rights to Edge Computers

Author:

Chua Cecil Eng Huang1ORCID,Niederman Fred2ORCID

Affiliation:

1. Missouri S&T - Business and Information Technology

2. Saint Louis University - Decision Sciences and ITM

Abstract

Internet of Things (IoT) designers frequently must determine whether action-oriented decisions should be made by edge computers or whether they should be made only by central servers combining input from all edge computers. An important example of this design problem occurs in fire protection IoT, where individual edge computers attached to sensors might be empowered to make decisions (have decision rights) about how to manage the fire. Alternatively, decision rights could be held exclusively by a central server isolated from the fire, because the designer is concerned damage to edge computers could cause them to act unreliably. This research models this allocation of decision rights to identify the relative influence of various decision factors. We first model the allocation of decision rights under the following assumptions: (1) The central server cannot make an error the edge computer cannot make; (2) the central server cannot update the edge computer with its information in a timely manner; and (3) the central server cannot reverse an action initiated by the edge computer to explore the factors impacting decision rights conferral. We then relax each of these three assumptions. We show how relaxing each assumption radically changes the factors impacting decision rights conferral. We also show that allowing the central server to update information on the edge computer or reverse the edge computer's decision making can result in overall lower system performance. We then perform a series of numerical experiments to understand how changing various parameters affect the problem. We show for the general real-world scenario, the key factor influencing the decision is the ability of the edge computer to detect false alarms. We also show magnitude of loss and ratio of real to false incidents have a linear and logarithmic relationship to the reliability of the edge computer.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Reference65 articles.

1. Monolith to Microservice Candidates using Business Functionality Inference

2. IoT technology is changing the future of fire safety;Agrawal S.;Industr. Fire World,2021

3. The Role of Decision Rights in Codevelopment Initiatives

4. Application Specific Internet of Things (ASIoTs): Taxonomy, Applications, Use Case and Future Directions

5. Anonymous. Potassium Carbonate (Anhydrous All Grades). 2017. Armand Products. Retrieved July 3 2017 from https://www.armandproducts.com/content/pdfs/POTASSIUM_CARBONATE_(ANHYDROUS_ALL_GRADES)_MTR_ANSI_EN1.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3