Bounded exhaustive test-input generation on GPUs

Author:

Celik Ahmet1,Pai Sreepathi1,Khurshid Sarfraz1,Gligoric Milos1

Affiliation:

1. University of Texas at Austin, USA

Abstract

Bounded exhaustive testing is an effective methodology for detecting bugs in a wide range of applications. A well-known approach for bounded exhaustive testing is Korat. It generates all test inputs, up to a given small size, based on a formal specification that is written as an executable predicate and characterizes properties of desired inputs. Korat uses the predicate's executions on candidate inputs to implement a backtracking search based on pruning to systematically explore the space of all possible inputs and generate only those that satisfy the specification. This paper presents a novel approach for speeding up test generation for bounded exhaustive testing using Korat. The novelty of our approach is two-fold. One, we introduce a new technique for writing the specification predicate based on an abstract representation of candidate inputs, so that the predicate executes directly on these abstract structures and each execution has a lower cost. Two, we use the abstract representation as the basis to define the first technique for utilizing GPUs for systematic test generation using executable predicates. Moreover, we present a suite of optimizations that enable effective utilization of the computational resources offered by modern GPUs. We use our prototype tool KoratG to experimentally evaluate our approach using a suite of 7 data structures that were used in prior studies on bounded exhaustive testing. Our results show that our abstract representation can speed up test generation by 5.68 times on a standard CPU, while execution on a GPU speeds up the execution, on average, by 17.46 times.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Java JIT Testing with Template Extraction;Proceedings of the ACM on Software Engineering;2024-07-12

2. CombTransformers: Statement-Wise Transformers for Statement-Wise Representations;IEEE Transactions on Software Engineering;2023-10-01

3. Learning Deep Semantics for Test Completion;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05

4. Korat-API;Proceedings of the 33rd Annual ACM Symposium on Applied Computing;2018-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3