Joint Program and Layout Transformations to Enable Convolutional Operators on Specialized Hardware Based on Constraint Programming

Author:

Rieber Dennis1,Acosta Axel1,Fröning Holger2

Affiliation:

1. Corporate Research, Robert Bosch GmbH, Germany

2. Heidelberg University, Germany

Abstract

The success of Deep Artificial Neural Networks (DNNs) in many domains created a rich body of research concerned with hardware accelerators for compute-intensive DNN operators. However, implementing such operators efficiently with complex hardware intrinsics such as matrix multiply is a task not yet automated gracefully. Solving this task often requires joint program and data layout transformations. First solutions to this problem have been proposed, such as TVM, UNIT, or ISAMIR, which work on a loop-level representation of operators and specify data layout and possible program transformations before the embedding into the operator is performed. This top-down approach creates a tension between exploration range and search space complexity, especially when also exploring data layout transformations such as im2col, channel packing, or padding. In this work, we propose a new approach to this problem. We created a bottom-up method that allows the joint transformation of both computation and data layout based on the found embedding. By formulating the embedding as a constraint satisfaction problem over the scalar dataflow, every possible embedding solution is contained in the search space. Adding additional constraints and optimization targets to the solver generates the subset of preferable solutions. An evaluation using the VTA hardware accelerator with the Baidu DeepBench inference benchmark shows that our approach can automatically generate code competitive to reference implementations. Further, we show that dynamically determining the data layout based on intrinsic and workload is beneficial for hardware utilization and performance. In cases where the reference implementation has low hardware utilization due to its fixed deployment strategy, we achieve a geomean speedup of up to × 2.813, while individual operators can improve as much as × 170.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference38 articles.

1. Machine Learning Systems are Stuck in a Rut

2. DORY: Automatic end-to-end deployment of real-world DNNs on low-cost IoT MCUs;Burrello Alessio;IEEE Trans. Comput.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3