Efficient compilation of algebraic effect handlers

Author:

Karachalias Georgios1,Koprivec Filip2,Pretnar Matija2ORCID,Schrijvers Tom3ORCID

Affiliation:

1. Tweag, France

2. University of Ljubljana, Slovenia / Institute of Mathematics, Physics, and Mechanics, Slovenia

3. KU Leuven, Belgium

Abstract

The popularity of algebraic effect handlers as a programming language feature for user-defined computational effects is steadily growing. Yet, even though efficient runtime representations have already been studied, most handler-based programs are still much slower than hand-written code. This paper shows that the performance gap can be drastically narrowed (in some cases even closed) by means of type-and-effect directed optimising compilation. Our approach consists of source-to-source transformations in two phases of the compilation pipeline. Firstly, elementary rewrites, aided by judicious function specialisation, exploit the explicit type and effect information of the compiler’s core language to aggressively reduce handler applications. Secondly, after erasing the effect information further rewrites in the backend of the compiler emit tight code. This work comes with a practical implementation: an optimising compiler from Eff, an ML style language with algebraic effect handlers, to OCaml. Experimental evaluation with this implementation demonstrates that in a number of benchmarks, our approach eliminates much of the overhead of handlers, outperforms capability-passing style compilation and yields competitive performance compared to hand-written OCaml code as well Multicore OCaml’s dedicated runtime support.

Funder

Flemish Fund for Scientific Research

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers;Proceedings of the ACM on Programming Languages;2023-10-16

2. A General Fine-Grained Reduction Theory for Effect Handlers;Proceedings of the ACM on Programming Languages;2023-08-30

3. A Monadic Implementation of Functional Logic Programs;Proceedings of the 24th International Symposium on Principles and Practice of Declarative Programming;2022-09-20

4. A typed continuation-passing translation for lexical effect handlers;Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2022-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3