BARAN

Author:

Mirhosseini Amirhossein1,Sadrosadati Mohammad2,Aghamohammadi Fatemeh2,Modarressi Mehdi3,Sarbazi-Azad Hamid4

Affiliation:

1. University of Michigan, Ann Arbor, US

2. Sharif University of Technology, Tehran, Iran

3. University of Tehran, Iran

4. Sharif University of Technology and IPM

Abstract

Virtual channels are employed to improve the throughput under high traffic loads in Networks-on-Chips (NoCs). However, they can impose non-negligible overheads on performance by prolonging clock cycle time, especially under low traffic loads where the impact of virtual channels on performance is trivial. In this article, we propose a novel architecture, called BARAN , that can either improve on-chip network performance or reduce its power consumption (depending on the specific implementation chosen), not both at the same time, when virtual channels are underutilized; that is, the average number of virtual channel allocation requests per cycle is lower than the number of total virtual channels. We also introduce a reconfigurable arbitration logic within the BARAN architecture that can be configured to have multiple latencies and, hence, multiple slack times. The increased slack times are then used to reduce the supply voltage of the routers or increase their clock frequency in order to reduce power consumption or improve the performance of the whole NoC system. The power-centric design of BARAN reduces NoC power consumption by 43.4% and 40.6% under CMP and GPU workloads, on average, respectively, compared to a baseline architecture while imposing negligible area and performance overheads. The performance-centric design of BARAN reduces the average packet latency by 45.4% and 42.1%, on average, under CMP and GPU workloads, respectively, compared to the baseline architecture while increasing power consumption by 39.7% and 43.7%, on average. Moreover, the performance-centric BARAN postpones the network saturation rate by 11.5% under uniform random traffic compared to the baseline architecture.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3