Spin Summations

Author:

Springer Paul1,Matthews Devin2,Bientinesi Paolo1

Affiliation:

1. AICES, RWTH Aachen, Aachen, Germany

2. ICES, UT Austin, Austin, TX

Abstract

In addition to tensor contractions, one of the most pronounced computational bottlenecks in the nonorthogonally spin-adapted forms of the quantum chemistry methods CCSDT and CCSDTQ, and their approximate forms—including CCSD(T) and CCSDT(Q)—are spin summations. At a first sight, spin summations are operations similar to tensor transpositions, but a closer look reveals additional challenges to high-performance calculations, including temporal locality and scattered memory accesses. This article explores a sequence of algorithmic solutions for spin summations, each exploiting individual properties of either the underlying hardware (e.g., caches, vectorization) or the problem itself (e.g., factorizability). The final algorithm combines the advantages of all the solutions while avoiding their drawbacks; this algorithm achieves high performance through parallelization and vectorization, and by exploiting the temporal locality inherent to spin summations. Combined, these optimizations result in speedups between 2.4× and 5.5× over the NCC quantum chemistry software package. In addition to such a performance boost, our algorithm can perform the spin summations in-place , thus reducing the memory footprint by 2× over an out-of-place variant.

Funder

Intel Corporation through Parallel Computing Center grants to RWTH Aachen and UT Austin

Arnold and Mabel Beckman Foundation

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3