The Latent Maximum Entropy Principle

Author:

Wang Shaojun1,Schuurmans Dale2,Zhao Yunxin3

Affiliation:

1. Wright State University

2. University of Alberta

3. University of Missouri at Columbia

Abstract

We present an extension to Jaynes’ maximum entropy principle that incorporates latent variables. The principle of latent maximum entropy we propose is different from both Jaynes’ maximum entropy principle and maximum likelihood estimation, but can yield better estimates in the presence of hidden variables and limited training data. We first show that solving for a latent maximum entropy model poses a hard nonlinear constrained optimization problem in general. However, we then show that feasible solutions to this problem can be obtained efficiently for the special case of log-linear models---which forms the basis for an efficient approximation to the latent maximum entropy principle. We derive an algorithm that combines expectation-maximization with iterative scaling to produce feasible log-linear solutions. This algorithm can be interpreted as an alternating minimization algorithm in the information divergence, and reveals an intimate connection between the latent maximum entropy and maximum likelihood principles. To select a final model, we generate a series of feasible candidates, calculate the entropy of each, and choose the model that attains the highest entropy. Our experimental results show that estimation based on the latent maximum entropy principle generally gives better results than maximum likelihood when estimating latent variable models on small observed data samples.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference50 articles.

1. A Learning Algorithm for Boltzmann Machines*

2. Information geometry of the EM and em algorithms for neural networks

3. Amari S. and Nagaoka H. 2000. Methods of Information Geometry. American Mathematical Society. Amari S. and Nagaoka H. 2000. Methods of Information Geometry . American Mathematical Society.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3