Affiliation:
1. Columbia University, NY
Abstract
There have been many attacks that exploit side-effects of program execution to expose secret information and many proposed countermeasures to protect against these attacks. However there is currently no systematic, holistic methodology for understanding information leakage. As a result, it is not well known how design decisions affect information leakage or the vulnerability of systems to side-channel attacks.
In this paper, we propose a metric for measuring information leakage called the Side-channel Vulnerability Factor (SVF). SVF is based on our observation that all side-channel attacks ranging from physical to microarchitectural to software rely on recognizing leaked execution patterns. SVF quantifies patterns in attackers' observations and measures their correlation to the victim's actual execution patterns and in doing so captures systems' vulnerability to side-channel attacks.
In a detailed case study of on-chip memory systems, SVF measurements help expose unexpected vulnerabilities in whole-system designs and shows how designers can make performance-security trade-offs. Thus, SVF provides a quantitative approach to secure computer architecture.
Publisher
Association for Computing Machinery (ACM)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献