IF-ConvTransformer

Author:

Zhang Ye1,Wang Longguang1,Chen Huiling1,Tian Aosheng1,Zhou Shilin1,Guo Yulan1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha, China

Abstract

Recent advances in sensor based human activity recognition (HAR) have exploited deep hybrid networks to improve the performance. These hybrid models combine Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to leverage their complementary advantages, and achieve impressive results. However, the roles and associations of different sensors in HAR are not fully considered by these models, leading to insufficient multi-modal fusion. Besides, the commonly used RNNs in HAR suffer from the 'forgetting' defect, which raises difficulties in capturing long-term information. To tackle these problems, an HAR framework composed of an Inertial Measurement Unit (IMU) fusion block and an applied ConvTransformer subnet is proposed in this paper. Inspired by the complementary filter, our IMU fusion block performs multi-modal fusion of commonly used sensors according to their physical relationships. Consequently, the features of different modalities can be aggregated more effectively. Then, the extracted features are fed into the applied ConvTransformer subnet for classification. Thanks to its convolutional subnet and self-attention layers, ConvTransformer can better capture local features and construct long-term dependencies. Extensive experiments on eight benchmark datasets demonstrate the superior performance of our framework. The source code will be published soon.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference58 articles.

1. Attend and Discriminate

2. A public domain dataset for human activity recognition using smartphones;Anguita Davide;Esann,2013

3. Shaojie Bai , J Zico Kolter , and Vladlen Koltun . 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 ( 2018 ). Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).

4. Self-Attention Networks for Human Activity Recognition Using Wearable Devices

5. Charikleia Chatzaki , Matthew Pediaditis , George Vavoulas , and Manolis Tsiknakis . 2016 . Human daily activity and fall recognition using a smartphone's acceleration sensor . In International Conference on Information and Communication Technologies for Ageing Well and E-Health. Springer, 100--118 . Charikleia Chatzaki, Matthew Pediaditis, George Vavoulas, and Manolis Tsiknakis. 2016. Human daily activity and fall recognition using a smartphone's acceleration sensor. In International Conference on Information and Communication Technologies for Ageing Well and E-Health. Springer, 100--118.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3