Venice

Author:

Zhao Boyan1ORCID,Hou Rui2,Dong Jianbo3,Huang Michael4,Mckee Sally A.5,Zhang Qianlong6,Liu Yueji6,Li Ye6,Zhang Lixin7,Meng Dan2

Affiliation:

1. Institute of Information Engineering, CAS; Institute of Computing Technology, CAS; University of Chinese Academy of Sciences

2. Institute of Information Engineering, CAS

3. Alibaba Group; Institute of Computing Technology, CAS

4. University of Rochester

5. Clemson University

6. Institute of Computing Technology, CAS; University of Chinese Academy of Sciences

7. Institute of Computing Technology, CAS

Abstract

Consolidated server racks are quickly becoming the standard infrastructure for engineering, business, medicine, and science. Such servers are still designed much in the way when they were organized as individual, distributed systems. Given that many fields rely on big-data analytics substantially, its cost-effectiveness and performance should be improved, which can be achieved by flexibly allowing resources to be shared across nodes. Here we describe Venice, a family of data-center server architectures that includes a strong communication substrate as a first-class resource. Venice supports a diverse set of resource-joining mechanisms that enables applications to leverage non-local resources efficiently. We have constructed a hardware prototype to better understand the implications of design decisions about system support for resource sharing. We use it to measure the performance of at-scale applications and to explore performance, power, and resource-sharing transparency tradeoffs (i.e., how many programming changes are needed). We analyze these tradeoffs for sharing memory, accelerators, and NICs. We find that reducing/hiding latency is particularly important, the chosen communication channels should match the sharing access patterns of the applications, and of which we can improve performance by exploiting inter-channel collaboration.

Funder

Chinese Academy of Science

National Science Fund for Outstanding Young Scholars, China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference51 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction of Data Resource Sharing Platform in College Students’ Ideological and Political Education Based on Deep Learning;Wireless Communications and Mobile Computing;2022-07-15

2. Remote English Teaching Resource Sharing Based on Internet O2O Model;Scientific Programming;2022-01-13

3. Conflict Coordination Method of Heterogeneous Educational Resources Sharing Based on Blockchain;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3