Stability of block algorithms with fast level-3 BLAS

Author:

Demmel James W.1,Higham Nicholas J.2

Affiliation:

1. Univ. of California, Berkeley

2. Univ. of Manchester, Manchester, UK

Abstract

Block algorithms are becoming increasingly popular in matrix computations. Since their basic unit of data is a submatrix rather than a scalar, they have a higher level of granularity than point algorithms, and this makes them well suited to high-performance computers. The numerical stability of the block algorithms in the new linear algebra program library LAPACK is investigated here. It is shown that these algorithms have backward error analyses in which the backward error bounds are commensurate with the error bounds for the underlying level-3 BLAS (BLAS3). One implication is that the block algorithms are as stable as the corresponding point algorithms when conventional BLAS3 are used. A second implication is that the use of BLAS3 based on fast matrix multiplication techniques affects the stability only insofar as it increases the constant terms in the normwise backward error bounds. For linear equation solvers employing LU factorization, it is shown that fixed precision iterative refinement helps to mitigate the effect of the larger error constants. Despite the positive results presented here, not all plausible block algorithms are stable; we illustrate this with the example of LU factorization with block triangular factors and describe how to check a block algorithm for stability without doing a full error analysis.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaussian variant of Freivalds’ algorithm for efficient and reliable matrix product verification;Monte Carlo Methods and Applications;2020-10-08

2. AutoParallel: Automatic parallelisation and distributed execution of affine loop nests in Python;The International Journal of High Performance Computing Applications;2020-07-14

3. Matrix Methods;Computational Methods in Physics;2018

4. Executing linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs;Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles;2018

5. Enabling Python to execute efficiently in heterogeneous distributed infrastructures with PyCOMPSs;Proceedings of the 7th Workshop on Python for High-Performance and Scientific Computing;2017-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3