Affiliation:
1. University of Cologne and The Hong Kong University of Science and Technology, Kowloon, Hong Kong
2. Arizona State University, Tempe, Arizona
3. The Hong Kong University of Science and Technology, Kowloon, Hong Kong
Abstract
Anomaly detection is an essential task for quality management in smart manufacturing. An accurate data-driven detection method usually needs enough data and labels. However, in practice, there commonly exist newly set-up processes in manufacturing, and they only have quite limited data available for analysis. Borrowing the name from the recommender system, we call this process a cold-start process. The sparsity of anomaly, the deviation of the profile, and noise aggravate the detection difficulty.
Transfer learning could help to detect anomalies for cold-start processes by transferring the knowledge from more experienced processes to the new processes. However, the existing transfer learning and multi-task learning frameworks are established on task- or domain-level relatedness. We observe instead, within a domain, some components (background and anomaly) share more commonality, others (profile deviation and noise) not. To this end, we propose a more delicate component-level transfer learning scheme, i.e., decomposition-based hybrid transfer learning (
DHTL
): It first decomposes a domain (e.g., a data source containing profiles) into different components (smooth background, profile deviation, anomaly, and noise); then, each component’s transferability is analyzed by expert knowledge; Lastly, different transfer learning techniques could be tailored accordingly. We adopted the Bayesian probabilistic hierarchical model to formulate parameter transfer for the background, and “
L
2,1
+
L
1
”-norm to formulate low dimension feature-representation transfer for the anomaly. An efficient algorithm based on Block Coordinate Descend is proposed to learn the parameters. A case study based on glass coating pressure profiles demonstrates the improved accuracy and completeness of detected anomaly, and a simulation demonstrates the fidelity of the decomposition results.
Funder
Hong Kong Research Grants Council (RGC) - General Research Fund
National Science Foundation (NSF) - Civil, Mechanical and Manufacturing Innovation
U.S. Department of Energy
Publisher
Association for Computing Machinery (ACM)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献