Instance Space Analysis for Algorithm Testing: Methodology and Software Tools

Author:

Smith-Miles Kate1ORCID,Muñoz Mario Andrés1ORCID

Affiliation:

1. The University of Melbourne, Parkville, Victoria, Australia

Abstract

Instance Space Analysis (ISA) is a recently developed methodology to (a) support objective testing of algorithms and (b) assess the diversity of test instances. Representing test instances as feature vectors, the ISA methodology extends Rice’s 1976 Algorithm Selection Problem framework to enable visualization of the entire space of possible test instances, and gain insights into how algorithm performance is affected by instance properties. Rather than reporting algorithm performance on average across a chosen set of test problems, as is standard practice, the ISA methodology offers a more nuanced understanding of the unique strengths and weaknesses of algorithms across different regions of the instance space that may otherwise be hidden on average. It also facilitates objective assessment of any bias in the chosen test instances and provides guidance about the adequacy of benchmark test suites. This article is a comprehensive tutorial on the ISA methodology that has been evolving over several years, and includes details of all algorithms and software tools that are enabling its worldwide adoption in many disciplines. A case study comparing algorithms for university timetabling is presented to illustrate the methodology and tools.

Funder

Australian Research Council under the Australian Laureate Fellowship scheme

ARC Training Centre in Optimisation Technologies, Integrated Methodologies and Applications

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3