Distributed localization for anisotropic sensor networks

Author:

Lim Hyuk1,Hou Jennifer C.2

Affiliation:

1. Gwangju Institute of Science and Technology, Gwangju, Republic of Korea

2. University of Illinois at Urbana-Champaign, IL

Abstract

In this article, we address the issue of localization in anisotropic sensor networks. Anisotropic networks differ from isotropic networks in that they possess properties that vary according to the direction of measurement. Anisotropic characteristics result from various factors such as the geographic shape of the region (nonconvex region), different node densities, irregular radio patterns, and anisotropic terrain conditions. In order to characterize anisotropic features, we devise a linear mapping method that projects one embedding space built upon proximity measures into geographic distance space by using the truncated singular value decomposition (SVD) pseudo-inverse technique. This transformation retains as much topological information as possible and reduces the effect of measurement noise on the estimates of geographic distances. We show via simulation that the proposed localization method outperforms DV-hop, DV-distance, and MDS-MAP, and makes robust and accurate estimates of sensor locations in both isotropic and anisotropic sensor networks.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3