Some Code Smells Have a Significant but Small Effect on Faults

Author:

Hall Tracy1,Zhang Min2,Bowes David2,Sun Yi2

Affiliation:

1. Brunel University

2. University of Hertfordshire

Abstract

We investigate the relationship between faults and five of Fowler et al.'s least-studied smells in code: Data Clumps, Switch Statements, Speculative Generality, Message Chains, and Middle Man. We developed a tool to detect these five smells in three open-source systems: Eclipse, ArgoUML, and Apache Commons. We collected fault data from the change and fault repositories of each system. We built Negative Binomial regression models to analyse the relationships between smells and faults and report the McFadden effect size of those relationships. Our results suggest that Switch Statements had no effect on faults in any of the three systems; Message Chains increased faults in two systems; Message Chains which occurred in larger files reduced faults; Data Clumps reduced faults in Apache and Eclipse but increased faults in ArgoUML; Middle Man reduced faults only in ArgoUML, and Speculative Generality reduced faults only in Eclipse. File size alone affects faults in some systems but not in all systems. Where smells did significantly affect faults, the size of that effect was small (always under 10 percent). Our findings suggest that some smells do indicate fault-prone code in some circumstances but that the effect that these smells have on faults is small. Our findings also show that smells have different effects on different systems. We conclude that arbitrary refactoring is unlikely to significantly reduce fault-proneness and in some cases may increase fault-proneness.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smell-Aware Bug Classification;IEEE Access;2024

2. A Practical Human Labeling Method for Online Just-in-Time Software Defect Prediction;Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2023-11-30

3. Examining deep learning’s capability to spot code smells: a systematic literature review;Cluster Computing;2023-10-03

4. Security‐based code smell definition, detection, and impact quantification in Android;Software: Practice and Experience;2023-09-09

5. Studying the effectiveness of deep active learning in software defect prediction;International Journal of Computers and Applications;2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3