Near-Optimal and Practical Algorithms for Graph Scan Statistics with Connectivity Constraints

Author:

Cadena Jose1ORCID,Chen Feng2,Vullikanti Anil1

Affiliation:

1. Dept. of Computer Science and Biocomplexity Institute, Virginia Tech

2. Dept. of Computer Science, University of Albany - SUNY

Abstract

One fundamental task in network analysis is detecting “hotspots” or “anomalies” in the network; that is, detecting subgraphs where there is significantly more activity than one would expect given historical data or some baseline process. Scan statistics is one popular approach used for anomalous subgraph detection. This methodology involves maximizing a score function over all connected subgraphs, which is a challenging computational problem. A number of heuristics have been proposed for these problems, but they do not provide any quality guarantees. Here, we propose a framework for designing algorithms for optimizing a large class of scan statistics for networks, subject to connectivity constraints. Our algorithms run in time that scales linearly on the size of the graph and depends on a parameter we call the “effective solution size,” while providing rigorous approximation guarantees. In contrast, most prior methods have super-linear running times in terms of graph size. Extensive empirical evidence demonstrates the effectiveness and efficiency of our proposed algorithms in comparison with state-of-the-art methods. Our approach improves on the performance relative to all prior methods, giving up to over 25% increase in the score. Further, our algorithms scale to networks with up to a million nodes, which is 1--2 orders of magnitude larger than all prior applications.

Funder

National Science Foundation

U.S. Department of Energy

Defense Threat Reduction Agency

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Method for Anomaly Detection in Power Energy Topology Graph Data Based on Domain Knowledge Graph and Graph Neural Networks;2024 IEEE 10th Conference on Big Data Security on Cloud (BigDataSecurity);2024-05-10

2. Fast calculation of p-values for one-sided Kolmogorov-Smirnov type statistics;Computational Statistics & Data Analysis;2023-09

3. NetMix2: A Principled Network Propagation Algorithm for Identifying Altered Subnetworks;Journal of Computational Biology;2022-12-01

4. Public transportation network scan for rapid surveillance;Biostatistics & Epidemiology;2022-06-02

5. Public transportation network scan for rapid surveillance;Biostatistics & Epidemiology;2022-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3