Higher Order Bayesian Networks, Exactly

Author:

Faggian Claudia1ORCID,Pautasso Daniele2ORCID,Vanoni Gabriele1ORCID

Affiliation:

1. IRIF, CNRS, Université Paris Cité, Paris, France

2. University of Turin, Torino, Italy

Abstract

Bayesian networks are graphical first-order probabilistic models that allow for a compact representation of large probability distributions, and for efficient inference, both exact and approximate. We introduce a higher-order programming language, in the idealized form of a lambda-calculus, which we prove sound and complete w.r.t. Bayesian networks: each Bayesian network can be encoded as a term, and conversely each (possibly higher-order and recursive) program of ground type compiles into a Bayesian network. The language allows for the specification of recursive probability models and hierarchical structures. Moreover, we provide a compositional and cost-aware semantics which is based on factors, the standard mathematical tool used in Bayesian inference. Our results rely on advanced techniques rooted into linear logic, intersection types, rewriting theory, and Girard's geometry of interaction, which are here combined in a novel way.

Funder

Agence Nationale de la Recherche

European Commission

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3