Software reuse

Author:

Krueger Charles W.1

Affiliation:

1. School of Computer Science, G'arnegie Mellon University, Pittsburgh, Pennsylvania

Abstract

Software reuse is the process of creating software systems from existing software rather than building software systems from scratch. This simple yet powerful vision was introduced in 1968. Software reuse has, however, failed to become a standard software engineering practice. In an attempt to understand why, researchers have renewed their interest in software reuse and in the obstacles to implementing it. This paper surveys the different approaches to software reuse found in the research literature. It uses a taxonomy to describe and compare the different approaches and make generalizations about the field of software reuse. The taxonomy characterizes each reuse approach in terms of its reusable artifacts and the way these artifacts are abstracted, selected, specialized, and integrated . Abstraction plays a central role in software reuse. Concise and expressive abstractions are essential if software artifacts are to be effectively reused. The effectiveness of a reuse technique can be evaluated in terms of cognitive distance —an intuitive gauge of the intellectual effort required to use the technique. Cognitive distance is reduced in two ways: (1) Higher level abstractions in a reuse technique reduce the effort required to go from the initial concept of a software system to representations in the reuse technique, and (2) automation reduces the effort required to go from abstractions in a reuse technique to an executable implementation. This survey will help answer the following questions: What is software reuse? Why reuse software? What are the different approaches to reusing software? How effective are the different approaches? What is required to implement a software reuse technology? Why is software reuse difficult? What are the open areas for research in software reuse?

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 534 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3