Computer Generation of Hardware for Linear Digital Signal Processing Transforms

Author:

Milder Peter1,Franchetti Franz1,Hoe James C.1,Püschel Markus2

Affiliation:

1. Carnegie Mellon University

2. ETH Zurich

Abstract

Linear signal transforms such as the discrete Fourier transform (DFT) are very widely used in digital signal processing and other domains. Due to high performance or efficiency requirements, these transforms are often implemented in hardware. This implementation is challenging due to the large number of algorithmic options (e.g., fast Fourier transform algorithms or FFTs), the variety of ways that a fixed algorithm can be mapped to a sequential datapath, and the design of the components of this datapath. The best choices depend heavily on the resource budget and the performance goals of the target application. Thus, it is difficult for a designer to determine which set of options will best meet a given set of requirements. In this article we introduce the Spiral hardware generation framework and system for linear transforms. The system takes a problem specification as input as well as directives that define characteristics of the desired datapath. Using a mathematical language to represent and explore transform algorithms and datapath characteristics, the system automatically generates an algorithm, maps it to a datapath, and outputs a synthesizable register transfer level Verilog description suitable for FPGA or ASIC implementation. The quality of the generated designs rivals the best available handwritten IP cores.

Funder

Office of Naval Research

Army Research Office

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference32 articles.

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Allo: A Programming Model for Composable Accelerator Design;Proceedings of the ACM on Programming Languages;2024-06-20

2. An improved hybrid network‐on‐chip with flexible topology and frugal routing;The Journal of Engineering;2024-06

3. SlidingConv: Domain-Specific Description of Sliding Discrete Cosine Transform Convolution for Halide;IEEE Access;2024

4. Frequency-Domain Inference Acceleration for Convolutional Neural Networks Using ReRAMs;IEEE Transactions on Parallel and Distributed Systems;2023-12

5. FPT: A Fixed-Point Accelerator for Torus Fully Homomorphic Encryption;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3