An Unsupervised Domain-Adaptive Framework for Chinese Spelling Checking

Author:

Wang Xi1ORCID,Zhao Ruoqing1ORCID,Li Jing2ORCID,Li Piji1ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. The Hong Kong Polytechnic University, Hong Kong Hong Kong

Abstract

Chinese Spelling Check (CSC) is a meaningful task in the area of Natural Language Processing (NLP), which aims at detecting spelling errors in Chinese texts and then correcting these errors. Current typical Chinese Spelling Check models have shown impressive performance in general datasets with the help of pretrained language models such as BERT, but suffer great perform loss in downstream tasks with domain-specific terms because they are primarily trained on general corpora. To verify the cross-domain adaptation ability of these models, we build three new datasets with abundant domain-specific terms on financial, medical, and legal domains and conduct empirical investigations on them in the corresponding domain-specific test datasets to verify the cross-domain adaptation ability. In response to the poor performance of the existing models, we propose a framework named uChecker which utilizes unsupervised method in spelling error detection and correction. Experiment results prove that uChecker can perform well in domain-specific test datasets while not losing its performance in the general domain.

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. Haithem Afli, Zhengwei Qiu, Andy Way, and Páraic Sheridan. 2016. Using SMT for OCR Error Correction of Historical Texts. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). European Language Resources Association (ELRA), Portorož, Slovenia, 962–966. https://aclanthology.org/L16-1153

2. Kuan-Yu Chen, Hung-Shin Lee, Chung-Han Lee, Hsin-Min Wang, and Hsin-Hsi Chen. 2013. A Study of Language Modeling for Chinese Spelling Check. In Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing. Asian Federation of Natural Language Processing, Nagoya, Japan, 79–83. https://aclanthology.org/W13-4414

3. Hsun-wen Chiu, Jian-cheng Wu, and Jason S. Chang. 2013. Chinese Spelling Checker Based on Statistical Machine Translation. In Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing. Asian Federation of Natural Language Processing, Nagoya, Japan, 49–53. https://aclanthology.org/W13-4408

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3