Towards Truly Adaptive Byzantine Fault-Tolerant Consensus

Author:

Wu Chenyuan1,Qin Haoyun1,Javad Amiri Mohammad2,Thau Loo Boon1,Malkhi Dahlia3,Marcus Ryan1

Affiliation:

1. University of Pennsylvania

2. Stony Brook University

3. UC Santa Barbara

Abstract

To acheive maximum performance, Byzantine fault-tolerant (BFT) systems must be manually tuned when hardware, network, or workload properties change. This paper presents our vision for a reinforcement learning (RL) based Byzantine fault-tolerant (BFT) system that adjusts effectively in realtime to changing fault scenarios and workloads. We identify several variables that can impact the performance of a BFT protocol, and show how these variables can serve as features in an RL engine in order to choose the context-dependent bestperforming BFT protocol in real-time. We further outline a decentralized RL approach capable of tolerating adversarial data pollution, where nodes share local metering values and reach the same learning output by consensus.

Publisher

Association for Computing Machinery (ACM)

Reference38 articles.

1. The diem team. https://developers.diem.com/papers/diemconsensus- state-machine-replication-in-the-diemblockchain/ 2021-08--17.pdf, 2021.

2. Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In The International Conference on Artificial Intelligence and Statistics, AISTATS '13.

3. Prime: Byzantine Replication under Attack

4. Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi, Boon Thau Loo, and Mohammad Sadoghi. The bedrock of byzantine fault tolerance: A unified platform for bft protocols analysis, implementation, and experimentation. In Symposium on Networked Systems Design and Implementation (NSDI). USENIX Association, 2024.

5. Elli Androulaki Artem Barger Vita Bortnikov Christian Cachin Konstantinos Christidis Angelo De Caro

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3