ISA Wars

Author:

Blem Emily1,Menon Jaikrishnan1,Vijayaraghavan Thiruvengadam1,Sankaralingam Karthikeyan1

Affiliation:

1. University of Wisconsin - Madison, Madison, WI

Abstract

RISC versus CISC wars raged in the 1980s when chip area and processor design complexity were the primary constraints and desktops and servers exclusively dominated the computing landscape. Today, energy and power are the primary design constraints and the computing landscape is significantly different: Growth in tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC ISA). Furthermore, the traditionally low-power ARM ISA is entering the high-performance server market, while the traditionally high-performance x86 ISA is entering the mobile low-power device market. Thus, the question of whether ISA plays an intrinsic role in performance or energy efficiency is becoming important again, and we seek to answer this question through a detailed measurement-based study on real hardware running real applications. We analyze measurements on seven platforms spanning three ISAs (MIPS, ARM, and x86) over workloads spanning mobile, desktop, and server computing. Our methodical investigation demonstrates the role of ISA in modern microprocessors’ performance and energy efficiency. We find that ARM, MIPS, and x86 processors are simply engineering design points optimized for different levels of performance, and there is nothing fundamentally more energy efficient in one ISA class or the other. The ISA being RISC or CISC seems irrelevant.

Funder

NSF

Cisco Systems Distinguished Graduate Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Instruction Set Design for Performance;Physical Review Letters;2023-02-15

2. A Comprehensive Survey on Software as a Service (SaaS) Transformation for the Automotive Systems;IEEE Access;2023

3. Cornucopia : A Framework for Feedback Guided Generation of Binaries;Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering;2022-10-10

4. Reassessing the Performance of ARM vs x86 with Recent Technological Shift of Apple;2022 International Conference on IT and Industrial Technologies (ICIT);2022-10-03

5. Performance analysis and optimization for SpMV based on aligned storage formats on an ARM processor;Journal of Parallel and Distributed Computing;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3