Evaluation of Folksonomy Induction Algorithms

Author:

Strohmaier Markus1,Helic Denis1,Benz Dominik2,Körner Christian1,Kern Roman3

Affiliation:

1. Graz University of Technology, Austria

2. University of Kassel, Germany

3. Know-Center Graz, Austria

Abstract

Algorithms for constructing hierarchical structures from user-generated metadata have caught the interest of the academic community in recent years. In social tagging systems, the output of these algorithms is usually referred to as folksonomies (from folk-generated taxonomies). Evaluation of folksonomies and folksonomy induction algorithms is a challenging issue complicated by the lack of golden standards, lack of comprehensive methods and tools as well as a lack of research and empirical/simulation studies applying these methods. In this article, we report results from a broad comparative study of state-of-the-art folksonomy induction algorithms that we have applied and evaluated in the context of five social tagging systems. In addition to adoptingsemanticevaluation techniques, we present and adopt a new technique that can be used to evaluate the usefulness of folksonomies fornavigation. Our work sheds new light on the properties and characteristics of state-of-the-art folksonomy induction algorithms and introduces a new pragmatic approach to folksonomy evaluation, while at the same time identifying some important limitations and challenges of folksonomy evaluation. Our results show that folksonomy induction algorithms specifically developed to capture intuitions of social tagging systems outperform traditional hierarchical clustering techniques. To the best of our knowledge, this work represents the largest and most comprehensive evaluation study of state-of-the-art folksonomy induction algorithms to date.

Funder

Austrian Science Fund

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Social Text Annotation With Joint Multilabel Attention Networks;IEEE Transactions on Neural Networks and Learning Systems;2021-05

2. Mining Tag Relationships in CQA Sites;Conceptual Modeling;2021

3. Knowledge base enrichment by relation learning from social tagging data;Information Sciences;2020-07

4. Rules for Inducing Hierarchies from Social Tagging Data;Transforming Digital Worlds;2018

5. Folksonomies;Encyclopedia of Social Network Analysis and Mining;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3