Surface Sulfur Detection via Remote Sensing and Onboard Classification

Author:

Mandrake Lukas1,Rebbapragada Umaa1,Wagstaff Kiri L.1,Thompson David1,Chien Steve1,Tran Daniel1,Pappalardo Robert T.1,Gleeson Damhnait1,Castaño Rebecca1

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology

Abstract

Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa. This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter.

Funder

National Aeronautics and Space Administration

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Onboard Science Instrument Autonomy for the Detection of Microscopy Biosignatures on the Ocean Worlds Life Surveyor;The Planetary Science Journal;2024-01-01

2. Resource Consumption and Radiation Tolerance Assessment for Data Analysis Algorithms Onboard Spacecraft;IEEE Transactions on Aerospace and Electronic Systems;2022-12

3. Enabling Onboard Detection of Events of Scientific Interest for the Europa Clipper Spacecraft;Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining;2019-07-25

4. Comparing experts and novices in Martian surface feature change detection and identification;International Journal of Applied Earth Observation and Geoinformation;2018-02

5. Data-Driven Optimization of Order Admission Policies in a Digital Print Factory;ACM Transactions on Design Automation of Electronic Systems;2015-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3