Autoregressive Feature Extraction with Topic Modeling for Aspect-based Sentiment Analysis of Arabic as a Low-resource Language

Author:

Sweidan Asmaa Hashem1,El-Bendary Nashwa2,Elhariri Esraa1

Affiliation:

1. Faculty of Computers and Artificial Intelligence, Fayoum University, Egypt

2. College of Computing and Information Technology, Arab Academy for Science, Technology, and Maritime Transport (AASTMT), Egypt

Abstract

This paper proposes an approach for aspect-based sentiment analysis of Arabic social data, especially the considerable text corpus generated through communications on Twitter for expressing opinions in Arabic-language tweets during the COVID-19 pandemic. The proposed approach examines the performance of several pre-trained predictive and autoregressive language models; namely, BERT (Bidirectional Encoder Representations from Transformers) and XLNet, along with topic modeling algorithms; namely, LDA (Latent Dirichlet Allocation) and NMF (Non-negative Matrix Factorization), for aspect-based sentiment analysis of online Arabic text. In addition, Bi-LSTM (Bidirectional Long Short Term Memory) deep learning model is used to classify the extracted aspects from online reviews. Obtained experimental results indicate that the combined XLNet-NMF model outperforms other implemented state-of-the-art methods through improving the feature extraction of unstructured social media text with achieving values of 0.946 and 0.938, for average sentiment classification accuracy and F-measure, respectively.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference27 articles.

1. Bing Liu and Lei Zhang . 2012. A survey of opinion mining and sentiment analysis . In Mining text data . Springer , 415–463. Bing Liu and Lei Zhang. 2012. A survey of opinion mining and sentiment analysis. In Mining text data. Springer, 415–463.

2. Kamaran H Manguri Rebaz N Ramadhan and Pshko R Mohammed Amin. 2020. Twitter sentiment analysis on worldwide COVID-19 outbreaks. Kurdistan Journal of Applied Research(2020) 54–65. Kamaran H Manguri Rebaz N Ramadhan and Pshko R Mohammed Amin. 2020. Twitter sentiment analysis on worldwide COVID-19 outbreaks. Kurdistan Journal of Applied Research(2020) 54–65.

3. Principles of variation in the use of diacritics (taškīl) in Arabic books

4. Mahmoud Al-Ayyoub , Abed Allah Khamaiseh , Yaser Jararweh , and Mohammed  N Al-Kabi . 2019. A comprehensive survey of arabic sentiment analysis. Information processing & management 56, 2 ( 2019 ), 320–342. Mahmoud Al-Ayyoub, Abed Allah Khamaiseh, Yaser Jararweh, and Mohammed N Al-Kabi. 2019. A comprehensive survey of arabic sentiment analysis. Information processing & management 56, 2 (2019), 320–342.

5. Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3